; **************************************************************** ; | OM-SRR, 2023 | ; | | ; | Library for spectral rhythm model via integer time ratios | ; | (partials) as phase-alilgned amplitude modulations. | ; | See https://steffenkrebber.de/research/sinusoidal-run-rhythm/| ; **************************************************************** ; ;This program is free software; you can redistribute it and/or ;modify it under the terms of the GNU General Public License ;as published by the Free Software Foundation; either version 2 ;of the License, or (at your option) any later version. ; ;See file LICENSE for further informations on licensing terms. ; ;This program is distributed in the hope that it will be useful, ;but WITHOUT ANY WARRANTY; without even the implied warranty of ;MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;GNU General Public License for more details. ; ;You should have received a copy of the GNU General Public License ;along with this program; if not, write to the Free Software ;Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,10 USA. ; ;Authors: M. Schumacher (in-package :om) ; main function ; gen-wave (defmethod! gen-partial (subdivision &key (precision 0.01) (decimals 5)) ;:icon 141 ;:initvals '(0 0.1 5) ;:indoc '("subdivision" "precision" "decimals") :numouts 2 (let* ((sampled-function (multiple-value-list (om-sample #'cos (* subdivision precision) 0 (* subdivision (* 2 pi)) decimals))) (x-points (second sampled-function)) (y-points (third sampled-function))) (values (om/ x-points subdivision) y-points) ) ) ; example ; (gen-partial 8) ; GEN-SRR ; legacy method (defmethod! gen-srr_2 (subdivision1 subdivision2 &key (precision 0.01) (decimals 5)) ;:icon 141 ;:initvals '(0 0.1 5) ;:indoc '("subdivision" "sampling-factor" "decimals") :numouts 2 (let* ((pointlist1 (multiple-value-list (gen-partial subdivision1 :precision precision :decimals decimals))) (pointlist2 (multiple-value-list (gen-partial subdivision2 :precision precision :decimals decimals))) ) (values (first pointlist1) (om* 0.25 (om+ 2 (om+ (second pointlist1) (second pointlist2)))) ) ) ) (defmethod! gen-srr (&rest subdivisions) :icon 988 :initvals '(nil) :indoc '("subdivisions") :numouts 2 (let ((valuelist (mat-trans (loop for sub in subdivisions collect (multiple-value-list (gen-wave1 sub :sampling-factor 2)))))) ; (print valuelist) (values (caar valuelist) (om* (expt 0.5 (length subdivisions)) (om+ (length subdivisions) ;(apply 'om+ (second valuelist))))) (loop for i from 0 to (1- (length (car (second valuelist)))) collect (reduce '+ (loop for list in (second valuelist) collect (nth i list))) )) ) ) ) ) (let* ((pointlist1 (multiple-value-list (gen-wave1 subdivision1))) (pointlist2 (multiple-value-list (gen-wave1 subdivision2))) ) (values (first pointlist1) (om* 0.25 (om+ 2 (om+ (second pointlist1) (second pointlist2)))) ) ) ) (loop for i from 0 to (1- (length (car *testwave*))) collect (reduce '+ (loop for list in *testwave* collect (nth i list))) ) (loop for i from 0 to (1- (length (car *testwave*))) collect ;(dx->x (nth i (car *testwave*)) (loop for list in (cdr *testwave*) collect (nth i list))) (reduce '+ (loop for list in *testwave* collect (nth i list))) ) (loop for list in *testwave* collect (nth 0 list)) *testwave* (nth 0 (car *testwave*)) (dx->x (cdr *testwave*) (defparameter *testwave* '((1.0 -0.98999 0.96017 -0.91113 0.84385 -0.75969 0.66032 -0.54773 0.42418 -0.29214 0.15425 -0.01328 -0.12796) (1.0 0.07074 -0.98999 -0.2108 0.96017 0.34664 -0.91113 -0.47554 0.84385 0.59492 -0.75969 -0.7024 0.66032) (1.0 -0.41615 -0.65364 0.96017 -0.1455 -0.83907 0.84385 0.13674 -0.95766 0.66032 0.40808 -0.99996 0.42418))) (om+ '((1 2) (5 6))) (om+ '(1 2) '(5 6) '(5 6)) (om+ '((1.0 -0.98999 0.96017 -0.91113 0.84385 -0.75969 0.66032 -0.54773 0.42418 -0.29214 0.15425 -0.01328 -0.12796) (1.0 0.07074 -0.98999 -0.2108 0.96017 0.34664 -0.91113 -0.47554 0.84385 0.59492 -0.75969 -0.7024 0.66032) (1.0 -0.41615 -0.65364 0.96017 -0.1455 -0.83907 0.84385 0.13674 -0.95766 0.66032 0.40808 -0.99996 0.42418))) (apply 'om+ '((1.0 -0.98999 0.96017 -0.91113 0.84385 -0.75969 0.66032 -0.54773 0.42418 -0.29214 0.15425 -0.01328 -0.12796) (1.0 0.07074 -0.98999 -0.2108 0.96017 0.34664 -0.91113 -0.47554 0.84385 0.59492 -0.75969 -0.7024 0.66032) (1.0 -0.41615 -0.65364 0.96017 -0.1455 -0.83907 0.84385 0.13674 -0.95766 0.66032 0.40808 -0.99996 0.42418))) (apply 'om+ '((1 2) (5 6))) (mapcar #'(lambda (x) (om+ 2 x)) '((1 2) (5 6))) ; output the object or the point lists ; optionally output cartesian or polar representation ; Computation of Farey-Sequence ; A Farey sequence of order n is the sequence of irreducible fractions between 0 and 1 that have denominators less than or equal to n, arranged in increasing order. (defun farey-sequence (n) "Compute the Farey sequence of order n." (let ((fractions '())) (loop for denominator from 1 to n do (loop for numerator from 0 to denominator when (and (>= numerator 0) (<= numerator denominator) (= 1 (gcd numerator denominator))) do (push (cons numerator denominator) fractions))) (sort fractions (lambda (a b) (let ((num-a (car a)) (den-a (cdr a)) (num-b (car b)) (den-b (cdr b))) (< (* num-a (float den-b)) (* num-b (float den-a)))))) ; (loop for (a . b) in fractions collect ; (/ a b) ; ) )) ;; Example usage (print (farey-sequence 5)) (farey-sequence 5) (let ((conspair '(1 . 5))) (/ (car conspair) (cdr conspair)) )